
Enabling Reliable Estimation in Robotics Via
Efficient Convex Relaxations

I. MOTIVATION AND BACKGROUND

The near future promises an accelerated level of human-
robot interaction, particularly in the field of mobile robots.
In emergent collaborative environments (streets, factories,
hospitals, etc.), it will be critical to develop autonomy that
is not only efficient, but also inherently safe and reliable.
Since optimization problems are ubiquitous at many layers
of the robotics software stack, reliability means ensuring that
our algorithms always provide truly optimal solutions. State-
of-the-art robotics solutions often rely on local optimization
techniques (e.g, Gauss-Newton, etc.), which, although highly
efficient, can converge to spurious local optima if not ini-
tialized well. Failures of this nature can cause troublesome
bugs and inefficiencies in general, but can also lead to life-
threatening situations once deployed.

Particularly in perception and state estimation, concerns
with spurious local minima have led to a recent surge of
interest in so-called certifiable methods, which guarantee
global optimality by applying convex relaxations1 to op-
timization problems. When successfully applied, certifiable
methods either directly find initialization-free, globally optimal
solutions to non-convex problems or certify global optimality
of a solution found via local optimization. Since these ap-
proaches use convex optimization, they avoid the exponential
complexity of other global methods like branch-and-bound.2

While these methods have been applied to a broad variety
of robotics problems (e.g., sensor calibration [2], [3], outlier
robust perception [4], [5], pose-graph optimization [6], range-
aided SLAM [7], trajectory planning [8], etc.), they still remain
relatively underutilized by roboticists in practice.

My vision is to establish certifiable methods as main-
stream solutions to key problems in state estimation
for mobile robotics.

I posit that two key challenges have impeded broader use of
certifiable methods:

Identifying Tight Relaxations: A convex relaxation is
referred to as tight (or exact) when its optimal cost is equal
to the optimal cost of the original, non-convex optimization
problem. This is a necessary condition for the practical appli-
cation of certifiable methods [9], but finding a tight relaxation
can be quite a laborious trial-and-error process. Oftentimes,
practitioners make restrictive assumptions (e.g., isotropic noise
models [6], [10], simplified geometries [3], etc.) to yield

1A convex relaxation extends or modifies the feasible set of a non-convex
optimization problem to yield a convex problem, which may have the same
optimum.

2Convex problems can be solved in polynomial time [1] whereas exactly
solving a non-convex problem is NP-hard.

Fig. 1. Samples of my works in certifiable methods for SLAM and
localization problems: a. Landmark-based SLAM [17]; b. Stereo-vision-
based SLAM with anisotropic noise model [18]; c. Runtime complexity
improvement in landmark-based SLAM [17] d. Continuous-time trajectory
or continuum robot shape estimation [19].

tight relaxations, resulting in limited practical application. One
promising approach is to tighten the relaxation by apply-
ing so-called redundant constraints. These constraints have
been applied to certify several problems in vision and state-
estimation [5], [10]–[13] as well as in the controls commu-
nity [14]–[16]. However, identifying the tightening constraints
is a bespoke process that largely depends on practitioner
expertise. Alternatively, there are some automated methods to
find tight relaxations, such as the Moment-SOS hierarchy, but
they typically lead to formulations that are intractably large
for robotics applications [4].

Computational Efficiency: It is worth noting that even
when a relaxation is tight, it may not be tractable to find
or certify a solution in real time. This is because certifiable
methods effectively lift the variables into a higher dimensional
space, considerably increasing problem size. For some prob-
lems of sufficiently small dimension (≤ 50 variables), the
relaxation itself can often be solved directly without sacrificing
realtime capability [10], [11], [20]. For large-scale problems
like SLAM (≥ 1000 variables), realtime performance can
be obtained by efficiently certifying global optimality of a
solution found via fast, local optimization. The Riemannian
Staircase is one such approach and has been used to obtain
realtime, globally optimal solutions to pose graph optimization
(PGO) in different contexts [6], [7], [21]. Unfortunately, when
redundant constraints are used to tighten relaxation, global
optimality can only be obtained by directly solving relaxations
using convex solvers. Though quite mature, these solvers are
prohibitively slow for large scale problems [18].

II. PRIOR WORK

Initial Works: My initial projects involved extending the
catalogue of existing efficient certifiable solutions. Together
with my collaborators, I showed that range-only localization
(e.g., for UWB-based drone flight) could be certified efficiently



via a recursive LDL-decomposition scheme [22]. In [17],
I introduced landmark estimation into a highly performant
method for PGO [6], yielding an efficient certifiable method
for landmark-based SLAM (see Figure 1-a). Using an efficient
marginalization of variables via a Schur-complement trick and
a sparsity-exploiting Cholesky decomposition, I achieved a
10x-100x speed improvement compared to prior methods (see
1-c for runtime comparison). Crucially, in both projects, I was
able to establish linear runtime complexity with respect to
main problem variables.

Identifying Tight Relaxations: The extension these initial
works required led to non-tight formulations that required
redundant constraints. Realizing that a principled approach
to finding these constraints did not exist in the literature, I
developed a method to find all possible redundant constraints
for a broad class of problems [23]. This approach allowed
practitioners to exactly assess if and how a given relaxation
could be tightened using standard linear algebra tools. My
specific contributions included theoretical completeness proofs
and the insight that a permuted QR decomposition could
be used to find constraints that were both interpretable and
scalable.

Armed with this new tool, I was able to find tight convex
relaxations for SLAM and localization problems with more
practical sensor models (e.g., anisotropic noise and stereo-
vision models as shown in Figure 1) and establish new connec-
tions between tightness and the posterior uncertainty of pose
estimates [18]. This tool also allowed my collaborators and I
to apply certifiable methods to Lie-group-based, continuous-
time state estimation (see Figure 1-d) [19]. In these problems,
the use of redundant constraints was crucial to obtaining
tightness, but rendered them too slow for realtime operation.
This led me to explore two potential recourses: improving
speed by exploiting sparsity and using these methods offline
for reliable learning.

Exploiting Problem Sparsity: Exploitation of problem
structure and sparsity have been crucial to the development of
performant solvers for SLAM over the past decades [24]–[26].
Though less well-known in robotics, chordal sparsity3 of
convex relaxations facilitate a decomposition that can yield
great improvements to efficiency for certifiable methods [27].
In [28], I showed that the batch-based localization problem I
explored in [18] exhibit a chain-like, chordal structure. Despite
the use of tightening redundant constraints, I showed that by
taking advantage of chordal decomposition techniques, the
runtime complexity in this problem could be kept linear in
the number of landmarks, making it competitive with state-of-
the-art local solvers.

Reliable Optimization in Learning: When certifiable
methods are not appropriate for realtime robotic applications,
they can still be quite useful in an offline setting. In partic-
ular, my recent work embeds certifiable methods in learning
networks as a differentiable optimization layer [29]. In this

3For the purposes of this note, chordal sparsity can be thought of as a
tree-like graph structure connecting interacting groups of variables

paper, I showed that local differentiable optimization layers
(e.g, Theseus [30]) are prone to spurious local minima that
corrupt the training process. On the other hand, our certifiable
approach used implicit differentiation to efficiently provide
gradient information during backpropagation and guaranteed
correctness of this information. I also used this method to
substantially improve the accuracy of an existing deep-learned
visual localization pipeline for field robotics.

III. FUTURE WORK

I have shown that certifiable methods improve the reliability
of state estimation algorithms and can be adapted to even
complex sensing modalities by using redundant constraints.
In some cases, I have shown that these methods can remain
performant at scale. However, these methods still lag behind
other modern state-estimation approaches in terms of exploit-
ing problem structure.

First, chordal sparsity techniques used in [28] have limited
applicability in large-scale problems with structured loops.
Indeed, when applied to the SLAM problems with loop
closures in [18], I found that these techniques did not lead to
a runtime speedup. Inspired by recent distributed algorithms
for SLAM problems [31]–[33], I am currently investigating a
more general approach to exploiting chordal sparsity that
still retains global optimality guarantees.

Second, online state estimation approaches are designed
to efficiently update their estimates as new data becomes
available [26], [34], but, to my knowledge, there has been
no certifiable method that is explicitly incremental. Since
chordal sparsity techniques break relaxations into smaller sub-
problems, they could be coupled with warm-starting solvers
(e.g., SCS [35]) to enable incremental certification. Equally
promising is the fact that these subproblems can actually be
processed in parallel, making them amenable to acceleration
via modern GPU architectures [8].

In the short term, I plan to apply these ideas in the context
of the extended SLAM approaches discussed in [18]. As a
representative case study, the lessons learned in this project
will be applicable to many large-scale robotics problems. Ad-
vances in these areas will firmly establish certifiable methods
as mainstream tools for reliable and efficient state estimation.

Looking more towards long term goals, I plan to further
explore the combination of versatile deep-learning frame-
works with the reliability of model-based optimization
layers explored in [29]. For example, large language models
(LLM) and their variants have sparked a massive shift in state
estimation towards metric-semantic understanding, particu-
larly for SLAM and localization [36]–[38]. By replacing the
backends of these methods with certifiable and differentiable
optimization layers, we can achieve versatile and reliable
autonomy that is capable of learning and adapting online.

In summary, certifiable methods enhance the reliability of
robotics, a property that often has lower priority than speed and
scalability. By unlocking the efficiency of these methods and
making them more accessible, we can also unlock autonomy
stacks that are safe, adaptive and performant.



REFERENCES

[1] S. P. Boyd and L. Vandenberghe, Convex Optimization.
Cambridge, UK ; New York: Cambridge University
Press, 2004.

[2] E. Wise, M. Giamou, S. Khoubyarian, A. Grover, and
J. Kelly, “Certifiably Optimal Monocular Hand-Eye
Calibration,” in 2020 IEEE International Conference
on Multisensor Fusion and Integration for Intelligent
Systems (MFI), Karlsruhe, Germany: IEEE, Sep. 2020,
pp. 271–278.
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